
International Journal of Scientific & Engineering Research, Volume 3, Issue 2, February-2012 1

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

T

Analysis of Execution Plans in

Query Optimization

Dr. Sunita M. Mahajan, Mrs. Vaishali P. Jadhav

Abstract— The sequence in which the source tables are accessed during query execution is called a query execution plan. The process of

selecting one execution plan from potentially many possible plans is referred to as query optimization. The query optimizer is one of the

most important components of a query processor. The input to the optimizer consists of the query, the database schema (table and index

definitions), and the database statistics. The output of the optimizer is a query execution plan, sometimes referred to as a query plan or just

a plan. The goal is to eliminate as many unneeded tuples, or rows as possible. The paper describes the design of query optimizer w ith four

basic phases such as Query Analysis, Index Selection Join Selection and Plan Selection.

Index Terms— Execution plan, index selection, join selection, query analysis, query optimization.

—————————— ——————————

1 INTRODUCTION

here are three phases that a query passes through during
the

DBMS‟ processing of that query:
• Parsing and translation

• Optimization

• Evaluation

Most queries submitted to a DBMS are in a high-level lan-
guage such as SQL. During the parsing and translation stage,
the human readable form of the query is translated into forms
usable by the DBMS. These can be in the forms of a relational
algebra expression, query tree and query graph.

The first step in processing a query submitted to a DBMS is
to convert the query into a form usable by the query
processing engine. High-level query languages such as
SQL represent a query as a string, or sequence, or characters.
Certain sequences of characters represent various types of to-
kens such as keywords, operators, operands, literal strings,
etc. Like all languages, there are rules (syntax and grammar)
that govern how the tokens can be combined into unders-
tandable (i.e. valid) statements. The primary job of the parser
is to extract the tokens from the raw string of characters and
translate them into the corresponding internal data elements
(i.e. relational algebra operations and operands) and struc-
tures (i.e. query tree, query graph). The last job of the parser
is to verify the validity and syntax of the original query
string.

In optimization phase, the query processor applies rules to
the internal data structures of the query to transform these
structures into equivalent, but more efficient representations.
The rules can be based upon mathematical models of the rela-
tional algebra expression and tree (heuristics), upon cost es-
timates of different algorithms applied to operations or upon
the semantics within the query and the relations it involves.
Selecting the proper rules to apply, when to apply them
and how they are applied is the function of the query op-
timization engine.

 The final step in processing a query is the evaluation phase.
The best evaluation plan candidate generated by the optimi-
zation engine is selected and then executed. There can exist
multiple methods of executing a query. Besides processing a
query in a simple sequential manner, some of a
query‟s individual operations can be processed in paral-
lel—either as independent processes or as interdependent
pipelines of processes or threads. Regardless of the method
chosen, the actual results should be same [1][2].

2. QUERY OPTIMIZATION

The paper focuses on query optimization based on cost,
which determines the query plan that will access the data
with the least amount of processing time. The input to the op-
timizer consists of the query, the database schema (table and
index definitions), and the database statistics. The output of
the optimizer is a query execution plan, sometimes referred to
as a query plan or just a plan.

The primary goal of the query optimizer is to find the cheap-
est access path to minimize the total time to process the
query. To achieve this goal, the optimizer analyses the query
and searches for access paths and techniques to minimize log-
ical page access and physical page access. Disk I/O is the
most significant factor in query cost. Therefore fewer physical
and logical I/O, speeds up the query [3][4][5].

————————————————

 Dr. Sunita M. Mahajan is currently Principal, Institute of Computer
Science, MET, Mumbai. E-mail: sunitamm@gmail.com

 Mrs. Vaishali P Jadhav is an Assistant professor in St Francis Instituteof
Technology, Borivali. She is a research scholar in NMIMS University,E-
mail:vaishaliwadghare@gmail.com

http://dictionary.sensagent.com/Tuple/en-en/

International Journal of Scientific & Engineering Research Volume 3, Issue 2, February-2012 2

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Cust_id Cust_name Cust_category

121 Johnson Rich

122 Sachin Rich

123 Amanat Middle

124 Jenet Poo r

125 Sandeep Rich

126 Ashish Poo r

127 Gaurav Middle

Fig. 1 Input and output to query optimizer
Query optimization has four basic steps:
• Query Analysis
• Index Selection
• Join Selection
• Plan Selection

 2.1 Query Analysis

Query analysis phase look at each clause of the query
and determine whether it can be useful in limiting how much
data to be scanned. It checks whether the clause is useful as a
search argument (SARG) or as a part of join criteria. A clause
that can be used as a search argument is referred to as Surga-
ble or Optimizable argument. It can make use of index for
faster retrieval.

A SARG limits a search because it specifies an exact match, a
range of values or a conjunction of two or more items joined
by AND. It also contains a constant expression that acts on a
column by using an operator. SURGABLE operators includes
<, >, <=, >=, BETWEEN and sometimes LIKE operator. LIKE
is surgable depending upon the wildcard used.

Consider the following surgable query:

Select emp_name, emp_designation, emp_salary from Employee
where emp_name like ‘JOHN%’

Consider the following non-surgable query:

Select emp_name, emp_designation, emp_salary from Employee
where emp_name like ‘_JOHN’

The second query is non-surgable because the wildcard (_) at
the beginning of JOHN prevents the use of index.

An expression that is not surgable can not limit the search.
Every row has to be checked to determine whether it
meets the conditions in the where clause. So index is not use-
ful to non- surgable expressions. Typical non-surgable ex-
pressions includes NOT, !=, < >, ! >, NOT EXISTS, NOT
IN and NOT LIKE etc.Surgable expressions use Clustered
Index Scan and Non- Surgable expressions use Index Seek.
Index scan is a vertical traversal of an index and index seek is
a horizontal traversal of an index [6][7].

 2.2 Index Selection

Index is a database object, which can be created on one or
more columns (16 Max columns combination).When creat-
ing the index , optimizer will read the column(s) and forms a
relevant data structure to minimize the number of data com-
parisons. The index will improve the performance of data re-
trieval and adds some overhead on data modification.

Conditions specified in where clause, i.e. the column used in
where clause should have an index for searching as well as
fast retrieval of data. If index covers all the referenced col-
umns then index is called covering index and is one of the
way to access data. Consider the following table:

 Table 1: Customer Table

 Clustered Index:
 The primary key created for the particular column will create
a clustered index for that column. A table can have only one
clustered index on it. When creating the clustered index, SQL
server 2005 reads the column and forms a Binary tree on it.
This binary tree information is then stored separately in the
disc. With the use of the binary tree, the search for the partic-
ular row based on the indexed column decreases the number
of comparisons to a large amount.

 Consider the following clustered index:
 Create clustered index CLUS_CUST_ID on customer
(Cust_id)

The use of index on Cust_id will generate binary tree and
reduce the number of comparisons while searching for a par-
ticular Cust_id in customer table[3][4].

Non-Clustered Index:

A non-clustered index is useful for columns that have some
repeated values. A clustered index is automatically created
when we create the primary key for the table. The non-
clustered index has to be created separately. A table can have
more than one Non-Clustered index. But, it should have
only one clustered index that works based on the binary tree
concept. Non-Clustered column always depends on the Clus-
tered column in the database.Consider the following non-
clustered index:

Create non-clustered index NCLUS_CUST_CATEGORY on cus-
tomer (cust_category)
In the above scenario, the cust_category is non-clustered in-
dex and the cust_id is clustered index arranged in a binary

International Journal of Scientific & Engineering Research Volume 3, Issue 2, February-2012 3

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

tree. Here, the Cust_category column with distinct values
Rich, Middle, Poor will store the clustered index columns
values along with it.

For example; Let us take only class value of Rich. The Index
goes like this:

Rich:
121,122,125

Index Cost
For determining the selectivity of a SARG, the estimate cost of
the access methods that can be used is calculated. Even if a
useful index is present, it might not be used if the optimizer
determines that it is not the cheapest access method. One of
the main components of the cost calculation is the amount of
logical I/O, which is the number of page accesses that
are needed. Logical I/O is counted whether the pages are
already in the memory cache or must be read from disk and
brought into the cache. Pages are always retrieved from cache
via a request to the buffer manager, so all reads are logical. If
the pages are not already in the cache, they must be brought
in by buffer manager.

In those cases, the read is also physical. Whether the access
method uses a clustered index, one or more non-clustered
indexes, a table scan, or another option determines the esti-

mate number of logical reads[5]. The estimated cost in logical

reads for different index structures is given below:

Table 2: The analysis of cost of data access for tables with dif-
ferent index structures

Access Method Es timated Cost(Logical Reads)
Table Scan Total number of data pages in the table
Clustered

Index
Number of levels in the index + number

of pages to scan
Non-Clustered

index on a

heap

Number of levels in the index + number

of leaf pages + Number of qualify ing

rows

The same data pages are often retrieved

many t imes, so number of logical reads

can be much higher than the number of

pages in the table.

Non-Clustered

index on a

table

The number of levels in the index + with

a clustered index number of leaf pages +

the number of qualify ing rows t imes the

cost of searching for a clustered index

key

Covering Non-

clustered index
Number of level in the index + number

of leaf index pages (qualifying row/rows

per leaf page) The data page need not be

accessed because all necessary

informat ion is in the index key.

 2.3 Join Selection

Join Selection is the third step in query optimization. If the

query is multi-table query or a self- join, the query optimizer
evaluates join selection and selects join strategy with the low-
est cost. It determines the cost using a number of factors, in-
cluding expected number of reads and the amount of memo-
ry required. It can choose between three basic strategies for
processing joins: nested loop joins, merge joins, and hash
joins[5][6].

Nested Loop Join

Iteratively scanning the rows of one table and trying to match
with second table using index is called nested loop join. If in-
dex is not available then hash join is used.

Consider the following jo in

Select dept_no, emp_id, emp_salary

from department dept join employee

empl on dept.dept_no = empl.dept_no

Pseudo-Code
Do(Until no more dept ows);

GET NEXT dept row

{

begin

// Scan empl, using an index empl.deptno

GET NEXT empl row for given

dept end

}

Merge Join

When two inputs are sorted on the join column then merge
join is used. If the inputs are already sorted then less I/O is
required to process a merge join if the join is one to many. A
many to many merge join uses a temporary table to store
rows instead of discarding them. If there are duplicate val-
ues from each input one of the inputs must rewind to start of
the duplicates as each duplicate from other input is
processed.

Pseudo- Code

GET one dept row and one empl row

DO(until one input is empty)

IF dept_no values are equal

Return values from both

rows

GET next employee row

ELSE IF empl.dept_no < dept.dept_no

GET next employee row

ELSE GET next department row

Hash Join
Hashing determines whether a particular data item matches
an already existing value by dividing the existing data into
groups based on some property. Hash Bucket contains the
data with the same value. For finding the match of new data,
hash bucket with existing data is to be checked. While
processing hash joins, the smaller input is taken as build in-
put. The buckets are actually stored as linked lists, in which
each entry contains only columns from build input that are

International Journal of Scientific & Engineering Research Volume 3, Issue 2, February-2012 4

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

needed. The collection of these linked lists is called the hash

table [6][7]. Table 3.shows the analysis of basic strategies for

processing joins.

Pseudo-Code
Allocate an Empty Hash Table

For Each Row in the Build

Input

Determine the hash bucket by applying the

hash function

Insert the relevant fields of the record into the bucket

For Each Record in the Probe In-

put

Determine the hash bucket

Scan the hash bucket for matches

Output matches

De-allocate the Hash Table

 Table 3: Analysis of basic strategies for processing joins
Parameters Nested

Loop Joins
Merge
Joins

Hash Joins

Name of
Inputs

Join Inputs

Sorted
Inputs

Build Input
Probe Input

Need of
Sorting

Not
Necessary

Sorting
saves
merging
time

Not
Necessary

Need of
Indexing

Indexing
saves the
searching
time

Not
Necessary

Not
Necessary

Situation
when it is
used

Joining the
small
number
of rows

Two join
inputs
are
sorted
on the
join
columns

Joining the
large
number
of rows

Need of
Equality

Not
Necessary

Not
Necessary

Must

Best use of
the method

When
index is on
the join
inputs

When join
inputs
are
sorted

When
smaller
table fits
entirely in
the
available
memory.

2.4 Plan Selection

The plan selection is the fourth step in query optimization. It
is based on the cost of a given plan, in terms of required CPU
preprocessing and I/O, and how fast query will execute.
Hence it is known as Cost-Based plan.The optimizer will
generate and evaluate many plans and will choose the lowest
cost plan. It is the plan which will execute the query as fast as
possible and use the least amount of resources, CPU and I/O.

The optimizer may choose a less efficient plan if it thinks it
will take more time to evaluate many plans than to run a less
efficient plan.

Suppose a query has a single table with no indexes and with
no aggregates or calculations within these the query then ra-
ther than spending the time in calculating the optimal plan,
optimizer will simply apply single, trivial plan to these types
of queries. If the query is non-trivial, the optimizer will per-
form cost-based calculation to select a plan. For this purpose,
optimizer relies on statistics of the execution plan [7].

3. CONCLUSION

Since SQL is declarative, there are typically a large number of
alternative ways to execute a given query, with widely vary-
ing performance. When query is submitted to the database,
the query optimizer evaluates different possible plans for
executing the query and returns what it considers the best
alternative.

Paper gives the overall phase-wise working of the query op-
timizer. In Query Analysis phase, optimizer will find search
arguments, OR clauses and Joins. In Index Selection phase,
optimizer chooses the best index for SARGs, ORs, Join Claus-
es and the best index to use for each table. In join reordering
phase, optimizer evaluates join orders, computes cost and
evaluates other server options for resolving joins. In plan se-
lection, optimizer will select a plan suitable for given query.

So while processing the query, a cost based query optimizer
has to find the cheapest access path to minimize the total time
of execution of the query.

REFERENCES

[1] Ramez Elmasri and Shamkant B. Navathe.

Fundamentals of Database Systems, second edition. Addison-Wesley Pub-

lishing Company, 1994.

[2] Avi Silbershatz, Hank Korth and S. Sudarshan. Database System Con-

cepts, 4th Edition. McGraw-Hill,2002

[3] Henk Ernst Blok, Djoerd Hiemstra and Sunil Choenni, Franciska de Jong,

Henk M. Blanken and Peter M.G. Apers.Predicting the cost-quality trade-off

for information retrieval queries: Facilitatiing database design and query op-

timization. Proceedings of the tenth international conference on Information

and knowledge management, October 2001, Pages 207-214.

[4] Reza Sadri, Carlo Zaniolo, Amir Zarkesh and Jafar Adibi. Optimization of

Sequence Queries in Database Systems. In Proceedings of the twentieth

ACM SIGMOD-SIGACTSIGART symposium on Principles of database sys-

tems, May 2001, Pages 71-81.

[5] G. Antoshenkov, “Dynamic Query Optimization in RdblVMS”, Proc. IEEE

Int „1. Conf on Data Eng.,Vienna, Austria, April 1993,538.

[6] Inside Microsoft SQL Server 2000.

http://flylib.com/books/en/2.257.1.137/1/

[7] K. Ono and G, M, Lehman, “Measuring the Complexity of Join Enumeration

in Query Optimization”, Proc. Int„1. Con$ on Ve~ Large Data Bases, Brisbane,

Australia, August 1990,31

http://flylib.com/books/en/2.257.1.137/1/

